Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method
نویسندگان
چکیده
The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.
منابع مشابه
Preparation and Characterization of Manganese Ferrite Nanoparticles via Co-precipitation Method for Hyperthermia
In this work, Mn ferrite nanopowders were prepared by co-precipitation method and were characterized. Phase identification of the nanopowders was performed by X-ray diffraction method and the mean particle size of the nanopowders was calculated by Scherrer's formula, using necessary corrections. Magnetic parameters of the prepared nanopowders were measured by a vibrating sample magnetome...
متن کاملReverse chemical co-precipitation: An effective method for synthesis of BiFeO3 nanoparticles
The reverse co-precipitation method was used for synthesis of the pure phase multiferroic BiFeO3 (BFO) nanoparticles. Influence of different pH values on the microstructure and magnetic properties of the BFO nanopowders was investigated. Thermogravimetric-differential thermal analysis (TG-DTA) technique indicated that the optimal temperature for calcination is 550°C. The phase formation and the...
متن کاملUltrasonic–Assisted Co–Precipitation Method of Preparation of Nanocomposites in The Al2O3–TiO2–ZrO2 System: Characterization and Microsturcture
Recently, the Al2O3–TiO2–ZrO2 system has found valuable applications, particularly, as a support for NOx storage–reduction (NSR) catalysts. Nanocomposite powders were prepared from the co-precipitation method in inorganic precursors. The behaviors of mixed oxide nanoparticles under ultrasonic irradiation, such as dispersion, and crushing were studied. Phase transformations, crystallite size, an...
متن کاملSynthesis of Nano-Structured La0.6Sr0.4Co0.2Fe0.8O3 Perovskite by Co-Precipitation Method
Nano-structured lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was successfully synthesized via co-precipitation method using metal nitrates as starting materials. Effects of precipitating agent and calcination temperature on the phase composition and morphology of synthesized powders were systematically studied using X-ray diffraction (XRD) and field emission scanning elect...
متن کاملA comparative study on the dispersion of CuO-ZnO-Al2O3 nanoparticles over HZSM-5 via batch co-precipitation, semibatch co- precipitation and combined co-precipitation-ultrasound methods
A series of CuO-ZnO-Al2O3 nanoparticles over HZSM-5 were successfully prepared using different methods of batch co-precipitation, semibatch co-precipitation and combined co-precipitation-ultrasound. Nitrates of copper, zinc and aluminum were used as precursors, while Na-ZSM-5 was employed as composite support and sodium carbonate was used as precipitant agent. The effects of preparation methods...
متن کامل